Real word examples of using
Active Learning in Materials
design and discovery
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On-the-fly closed-loop materials discovery via
Bayesian active learning

» an autonomous materials discovery
methodology for functional inorganic
compounds which allows scientists to fail
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The materials problem

* Explore the Ge—Sb—Te ternary system to identify an optimal phase-
change memory (PCM) material for photonic switching devices

* have been used in DVD-RAM and nonvolatile phase-change random-
access memory.

* find a compound with the highest optical contrast between
amorphous and crystalline states in order to realize multi-level optical
switching with a high signal-to-noise ratio.

* CAMEO is tasked to find the composition with the largest difference
in the optical bandgap AEg and hence optical contrast between
amorphous and crystalline states.



CAMEQO Algorithm

» First tries to figure out a phase map then switches to find optimal compositions maximizing the
band gap

{ P(x), ¢<80%
F(x, ) = u(x,) + po(x,) + yd(bfx,), else

» Optimization balances exploitation and exploration through the mean p(xr) and weighted variance
Bao(xr) much like the UCB algorithm

» The optimization acquisition function also allows the user to target points closer or further from
phase boundaries via yd(xr), where d(xr)is the distance from point xr to the nearest phase boundary
and vy is a user-defined parameter—negative (positive) to emphasize points near the edge (center) of
the phase region.



CAMEOQO Algorithm

a Maximizing AE,: Ge-Sb-Te b Phase Map and AE for Ge-Sb-Te
Te AE, (eV)
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» A phase map is learned and fine-tuned using active learning

» Black star — iteration where a known optimal was found using the algorithm; rest are mean and std over
100 runs showing the CAMEO algorithm outperforms the optimization wrto UCB and random mean



Active Search

* we seek to sequentially inspect data to discover as many members of
a desired class as possible with a limited budget

* The identities of the targets are unknown a priori but can be
determined by querying an expensive oracle that can compute a label

* Given a budget T on the number of queries we can provide the oracle,
we wish to design a policy that sequentially queries items to maximize
the number of targets identified

https://www.youtube.com/watch?v=9y1HNY95LzY&ab channel=Shaliliang



A rough explanation of utility

* Given locations X and a label to denote whether something is a target
in Y, we can define utility to be the number of targets found u(Y)

 When we maintain a probabilistic distribution for where the target
locations can be found, we can “estimate” the expected utility

E[uw(Di\ Di1) | X, Dia] = Byjxp,, [u(Y)] = Xpex Prly = 1| z,Di1),

When only one iteration is left, it is best to choose a location with a
high likelihood of being a target based on the posterior

E[u(D\Di) | X, Di] = 3 ,ex Pr(y = 1| z,Di)+Eyx,p, [maXX' E[w(D:\Di+1) | X’,Dz‘+1]],

The above thinking can be extended using what is called a Bellman’s equation



Application to finding bulk metallic glasses

* The goal here is to find novel alloys capable of forming bulk
metallic glasses (BMGs).

* Compared to crystalline alloys, BMGs have many desirable
properties, including high toughness and good wear resistance.

* This dataset consists of 118 678 known alloys from the materials
literature among which 4 746 (about 4%) are known to exhibit
glass-forming ability, which we define as positive/targets.

e Or in virtual screening for drug discovery -- of a large database of
compounds searching for those that show binding activity against
some biological target.



T-test based evaluation of the proposed
method

Table 3: Results for 10 drug discovery datasets in batch setting: Average number of positive
compounds found by the baseline uncertain-greedy batch, greedy-batch, sequential simulation and
batch-ENS policies. Each column corresponds to a batch size, and each row a policy. Each entry is an
average over 200 experiments (10 datasets by 20 experiments). The budget 7" is 500. Highlighted are
the best (bold) for each batch size and those that are not significantly worse (blue italic) than the best
under one-sided paired ¢-tests with significance level o = 0.05.

1 5 10 15 20 25 50 75 100

UGB - 257.6 2579 2583 250.1 2460 218.8 2062 172.1
g greedy 269.8 268.1 264.1 261.6 2582 257.0 240.1 2272 208.2
‘o ss-one-1 269.8 260.7 254.6 2452 233.6 2234 2008 1829 1789
5 ss-one-m 269.8 2645 2577 250.0 2444 2365 211.7 1954 1794
o ss-one-s 269.8 266.8 261.3 256.7 248.7 244.1 2149 2024 1813
g ss-one-0 269.8 268.1 264.1 261.6 2582 257.0 240.1 227.2 208.2
‘@ ss-two-1 281.1 237.1 2198 210.8 2121 1962 172.1 1588 1529
o ss-two-m 281.1 252.6 2464 2372 2329 225.1 2002 181.6 167.2
© SS-two-s 281.1 2489 2425 2353 2266 2192 196.7 1753 1583
I ss-two-0 281.1 2525 2476 2479 2444 2404 2256 2138 199.1
v ss-ENS-1 2951 2694 2479 2272 2231 2103 1853 152.6 148.7
g ss-ENS-m 295.1 2938 290.2 2853 281.6 2744 2494 2172 203.1
o SS-ENS-s 295.1 2899 2783 269.8 262.6 255.0 220.8 1855 161.2

ss-ENS-0 295.1 293.6 289.1 288.1 2875 280.7 269.2 2572 241.0

batch-ENS-16  295.7 300.8 296.2 2939 2921 288.0 2758 2723 25209
batch-ENS-32  295.1 300.8 2955 2979 2906 288.8 2814 275.5 263.5




Application to data-driven discovery of
bifunctional catalysts

The goal is to find catalyst(s) that can work the best in both Oxygen evolution and reduction
reaction for Hydrogen based or Metal-air batteries
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Application to data-driven discovery of
bifunctional catalysts
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Null covariance for all CV’'s
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We represent each CV curve as a function of time and voltage thus x has two dimensions.



covariance for S-shaped CV's
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covariance for S-shaped CV's
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1000 labels roughly correspond to 6% of the total possible query locations where the targets are less than 1%



