
Lecture 18: The sequential design method for modelling–Active learning
So far in the course, we have designed the experiment and themodeling tools separately. While this is
the standard procedure, it could be quite prohibitive in terms of data efficiency. For example, imagine
your task as mapping out a region of two-dimensional space w.r.to. a measured variable. This
could be mapping out a phase diagram of materials with changes to composition and temperature
and measuring if we obtained a periodic structure at any given combination or not. Or perhaps
designing a material that requires us to apply a specific rate of cooling and application of tensile
stress to measure anisotropy. In both the cases above we are dealing with a similar problem as
in modeling so a reasonable choice would be to define a grid or one of the randomization design
methods discussed so far to collect data and fit it to our model of choice. In the two cases we
discussed above, this approach turns out to be a data-inefficient and sometimes intractable approach.
One possible reason for this is that measured responses have some spatial correlations that result
in redundant information gained from nearby samples. For example, in the case of phase mapping,
it is reasonable to expect that samples prepared under similar temperatures and compositions tend
to have similar properties thus a query in the two-dimensional space not only reveals a binary
label for the location queried but also for the nearby points. A better strategy for the experimental
design would be to perform the modeling and data collection in an iterative fashion. In particular,
devising a strategy to sequentially query our design space such that after each iteration, we only
sample location that has a high likelihood of improving our model prediction capabilities. In the
literature, this method is called active learning which we define in this lecture and discuss the inner
workings in detail in the next class. Our knowledge of local correlations between measured outputs
can be encoded using prior knowledge thus we take a Bayesian approach. The Gaussian process is
a suitable model choice for this because of its ability to predict the response and uncertainty around
each point.
Suppose we have collected the following data set so far at locations X = {x1,x2, . . . ,xt} and
corresponding measured responses as y = {y1, y2, . . . , yt}. Assuming that the underlying function
mapping y to any x is given by f such that y ∼ f + ϵ, ϵN (0, σ). Furthermore, we have selected to
model f using a GP such that f ∼ N (µ,K) for a given mean and covariance/kernel function. In
the active learning paradigm, our goal is to collect a set of B data points at locations that are going
to improve the model we are trying to fit. At each iteration, we query a selector that tells us a set of
locations x available for selection. The job of the selector is to keep track of labeled and unlabelled
points and provide a set of points for which we want to evaluate the utility of being selected. A
simple selector would be to return all the points that have not been selected so far or use more
complicated techniques such as a nearest neighbor group where only points that are not the nearest
neighbors of any of the labeled points are returned. Once we have selected the points to evaluate,
we compute the utility of adding any point from the eligible points to our data repository. Given
that our model is a probabilistic one, one approach is to compute uncertainty at each prediction
and use a score such as marginal conditional entropy (measuring additional information gained by
evaluating the ground truth function at any location) defined as follows:

H[y|x,D] = −
∑
i

p(y = i|x,D) log(p(y = i|x,D))

x∗ = argmax H[y|x,D]

These are called query strategies wherein we select query points that either maximize or minimize
score functions. A query strategy such as the maximizer of marginal entropy shown above returns a
set of points we can query in our experiment and update our model and data set object, and selector.
Putting it all together, we obtain the following pipeline for active learning:

1

Algorithm 1: Active learning algorithm
Data: X,y, B
Result: {x, y}t+B

t

1 while budget not expired do
2 xu = selector(X,y) ;
3 x∗ = query strategy(X,y, xu) ;
4 y∗ = experiment(x∗) ;
5 X = [X, x∗],y = [y, y∗] ;

Figure 1 illustrates this using a simple example in a regression setting. The query strategy is defined
as the one that maximizes the standard deviation of prediction around each point in the domain.
The selector is the trivial unlabeled selector that returns all the points that have not been labeled
within a linear grid of the domain. The active learning procedure (also referred to as a campaign)

0 20
−1.0

−0.5

0.0

0.5

1.0

t= 0

0 20

−0.5

0.0

0.5

1.0

t= 1

0 20

−1

0

1

t= 2

0 20

−1

0

1

t= 3

0 20

−1

0

1

t= 4

0 20

−1

0

1

t= 5

0 20

−1

0

1

t= 6

0 20

−1

0

1

t= 7

0 20

−1

0

1

t= 8

0 20

−1

0

1

t= 9

Figure 1: Active learning in regression available data set X is denoted as blue colored circles while
the query point for the next iteration is shown in the dotted red line. The model prediction at
each iteration is shown in a solid blue line for the mean and grey shaded region for the standard
deviation.

started with just four points drawn in blue circles in the subplot titled t = 0 and the query strategy
returned the point depicted in a red cross mark in the same subplot. This procedure is repeated for
the next 10 iterations collecting more data as we go along and improving the model both in terms
of predictions and uncertainty.

2

