
Lecture 5: Randomization and design: The test of significance
In the previous few lectures, we spent time getting a view of experiments as samples from a
distribution that has a population or an analytical expression parameterized by the measures.
We also learned that randomizing different design variables is a key aspect of accounting for
confounding and decreasing the ambiguity in our inferences. In this lecture, we will build on
those concepts and try to analyze computationally, the results of an experiment to understand the
importance of design in making a particular inference. Because this is a course on the design of
experiments, not statistics, our focus is mainly on understanding how a certain design or viewpoint
of the data obtained helped us in the final inference we were able to draw. In any experiment, one of
the primary goals is to infer whether the changes we experimented with resulted in any significant
change to the outcome. Suppose we are studying the effect of a new synthesis recipe of making
silica nanoparticles in increasing the yield of a fruit plant as an alternative to the existing fertilizer
methods. The silica nanoparticles are coated in a trace amount to some of the seeds selected via a
coin toss and shipped to the farmers who followed the same procedure they would otherwise. For
simplicity, assume that the farmer obtained a total of 20 seeds and planted them in four rows each
containing five seeds. After the seeds were planted, we went to the field and took a complicated
image using some advanced technology that does not exist currently to get a precise binary estimate
of whether a seed has a coating of nanoparticles or not. From the description, we understand
that we randomized the design variable assignment which means we have likely satisfied the i.i.d
assumption. After some time, we measure the percentage of fruit that was edible from each one of
the seeds and recorded them as follows:

S.No % edible label
1 89.7 1
2 81.4 0
3 84.5 1
4 84.8 0
5 87.3 0
6 79.7 1
7 85.1 0
8 91.7 1
9 83.7 1
10 84.5 0
11 84.7 1
12 86.1 1
13 83.2 1
14 91.9 1
15 86.3 1
16 79.3 1
17 82.6 0
18 89.1 1
19 83.7 0
20 88.5 0

Table 1: Example data from the edible fruit example above

where 1 is for seeds with coating and 0 otherwise. We can use our estimates from the sample means
to obtain ȳ1 = 85.93, ȳ0 = 84.73 thus a gain of 1.19 units for using silica nanoparticles. Now the
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question is how do we say whether this method has resulted in any significant increase in the total
output of edible fruit? Typically there are three approaches: 1) Use a known reference distribution;
2) Random sample model; 3) Randomized design method.

Known reference distribution
Suppose you have access to data from the previous set of batches without modification to the seeds.
We can look at the distribution of variation in the percentage of edible fruit between batches of
10 (since we sampled 20 seeds with roughly 10 each with modified vs modified.). If the difference
we observed 1.19 is not frequent in our computed reference distribution, then we can discredit
our null hypothesis that the apparent gain in percentage yield is not statistically significant. The
gain is indeed significant because we observed such change only with a tiny fraction of probability
previously. Choosing the reference set to compute the distribution should be done carefully to make
sure it clearly represents the without-modification batch used as the control.

Random sample model
In this model, we think of each batch of samples to be a random draw from an underlying distribution.
Our null hypothesis, in this case, would be that if the gain is not significant and the two batches
are indeed from a single distribution. On the basis of the random sampling assumption, we can
describe the observations of the percentage yields to be independently drawn. Further, suppose
that our hypothesis is that two batch samples are from random populations of the same variance
but possibly of different means µ0, µ1. We can compute the standard error of the expected gain as
follows:
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Because the errors are independently distributed, we would expect it to be normal because of the
central limit effect with the normal deviate given as:
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As discussed before, we only have access to a sample from each population we are considering so
we estimate them using sample statistics:
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where the sample variance is estimated using a similar assumption of normality before:
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The value t follows a distribution called the student’s t-distribution. The probability of any given t
values and the number of degrees of freedom can be found using the following python code:

1 from scipy.stats import t as tdist

2 print(tdist.sf(t, dof))

If the probability from the above calculation is below a certain threshold 5%, we would argue that
the modification has some effect as evidenced by the gain in the percentage yield.

Randomized design method
One of the assumptions we had in the previous model about the independence of errors may not
hold if there is a small correlation between consecutive readings (also called autocorrelation). This
can simply be because of the way measurement is performed. In such cases, we consider that the
random assignment we used is just one possibility of multiple such assignments. For example,
to assign labels 0, 1 for twenty samples can be performed in 20!

10!10! = 184756 ways. Thus if the
actual modification does not have a significant effect on the outcome, the observed change would
be equally likely for different assignments of the labels while keeping the yields the same. To keep
the computational demands minimal, we illustrate this in a different example in the following code:

1 from math import comb
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3 pounds = np.array([29.2, 11.4, 26.6, 23.7, 25.3, 28.5, 14.2, 17.9, 16.5, 21.1, 24.3])

4 labels = np.array([1,1,0,0,1,0,0,0,1,1,0])

5 mean_A = np.mean(pounds[labels==1])

6 mean_B = np.mean(pounds[labels==0])

7 print(’Observed difference : %.2f’%(mean_A-mean_B))

8 num_possible = comb(len(pounds), 5)

9 print(’Total assignments possible: ’, num_possible)

10

11 >>> Observed difference : -1.83

12 >>> Total assignments possible: 462

where we have created a data set called pounds with a total of 11 samples and assigned 5 of them
the label A and B to the rest. In this case, the total number of possible assignments into groups
A and B are given by

(
11
5

)
= 462. The following code iterates over all the possible assignments,

computes the difference in averages, and plots a histogram shown in Figure 1.
1 import itertools

2 import seaborn as sns

3 import matplotlib.pyplot as plt

4 all_asgs = list(itertools.combinations(np.arange(len(pounds)), 5))

5 all_diff = []

6 for asg in all_asgs:

7 A = np.asarray(asg)

8 B = np.setdiff1d(np.arange(len(pounds)), A)

9 yA = pounds[A]

10 yB = pounds[B]

11 diff = np.mean(yA)-np.mean(yB)

12 all_diff.append(diff)

13 fig, ax = plt.subplots()

14 sns.histplot(x=all_diff, kde=True)

15 ax.axvline(mean_A-mean_B, color=’tab:red’, ls=’--’)

16 plt.show()

The red dotted vertical lines correspond to our observed value of−1.83which has a rough probability
of 55/462 ≈ 12% probability. Therefore we conclude that the null hypothesis that says method A
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Figure 1: Randomization distribution using the Random design method

is as good as method B cannot be discredited.

4


