
Lecture 3 : The normal distribution
The Normal distribution (also called a Gaussian distribution) is one of the most popular descriptions
of distribution mainly because of the central limit effect. The central limit effect represents the case
of experimental errors driven purely by randomness that tend to be roughly symmetric around a
central value. The normality of the experimental errors can be observed when there is a multitude
of components that can result in an experimental error. The normal distribution is parameterized
by the mean µ and variance σ2 and can be expressed using the following analytical expression:

p(y) =
1

σ
√
2π

exp

(
− (y − µ)2

2σ2

)
A useful notion when working with normal distribution is to reformulate our sample value using
standardization which means the samples have a mean of zero and a standard deviation of 1:

z =
y − µ

σ

Using z, we can also describe a sample value using a score that represents the probability of it being
between the mean and one standard deviation. This notion is particularly effective in removing
magnitude-based effects when we analyze the data. The resulting distribution is given by the
following:

p(z) =
1√
2π

exp

(
−z2

2

)
We denote a Normal distribution using N (µ, σ) to highlight that it is parameterized by mean and
standard deviation. Having analytical expressions allows us to write computer programs to perform
random sampling from a distribution to understand its behavior. The following python code defines
a standardized normal distribution and random samples of 5 points.

1 >>> from scipy.stats import norm

2 >>> r = norm.rvs(size=5)

3 >>> print(r)

4 [-1.60551724 1.29864839 -0.98856248 -1.83191687 -1.96522119]

We can samplemuchmore points and plot a histogram and see howwell it matches the corresponding
analytic expression for the pdf:

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from scipy.stats import norm

4

5 z = np.linspace(-3.5,3.5, 100)

6 r = norm.rvs(size=1000)

7 rv = norm()

8 fig, ax = plt.subplots()

9 ax.plot(z, rv.pdf(z), ’k-’, lw=2, label=r’$\mathcal{N}(0,1)$’)

10 ax.hist(r, density=True, histtype=’stepfilled’, alpha=0.2, label=’Samples’)

11 ax.set_xlabel(r’z’)

12 ax.set_ylabel(r’$p(z)$’)

13 fig.legend()

14 plt.show()

Scientific experiments are seldom run with just a single variable that impacts the outcome. The
Normal distribution equivalent for the multi-variable case is called a multi-variate normal distri-
bution or mvn in short. Suppose we are interested in expressing a mvn of a k variables which we

1

−2 0 2
z

0.0

0.1

0.2

0.3

0.4

p(
z)

N (0, 1)

Samples

Figure 1: Standardized normal distribution: sampled for 1000 random points

denote using a random vector of size k using X = [x1, x2, . . . , xk]. Much like the single variable
case, we need a mean value µ and a covariance Σ to parameterize an mvn using N (µ,Σ). The two
parameters required are obtained as follows from the population:

µ = E(X) = [E(x1),E(x2), . . . ,E(xk)]

Σij = E((xi − µ)(xj − µ))

We could also talk about what it means for an mvn to be standardized by considering that each
component of our random vector is z-normalized i.e. have a mean zero and variance 1. When the
k × k matrix Σ is positive definite (i.e. eigenvalues are real positive numbers), we can obtain a
probability density function for the random variables using the following formula:

p(Xk) =
1√

(2π)k|Σ|
exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
In Figure 2, we have used the following python code to generate samples of different sizes and
visualized them in the two-dimensional plane they are drawn from for a given mvn.

1 from scipy.stats import multivariate_normal as mvn

2

3 dist = mvn([0.5, -0.2], [[2.0, 0.3], [0.3, 0.5]])

4 fig, axs = plt.subplots(1,3, figsize=(3*5, 5))

5 fig.subplots_adjust(wspace=0.3)

6 for i, n in enumerate([10,200,1000]):

7 s = dist.rvs(size=n)

8 axs[i].scatter(s[:,0], s[:,1], color=’k’, alpha=0.5)

9 axs[i].set_xlim([-3,3])

10 axs[i].set_ylim([-3,3])

11 axs[i].set_title(r’$N = %d$’%n)

12 plt.show()

Observe that as we increase the number of samples drawn, we see a clear pattern of the density
emerge around the mean location of the underlying distribution at µ = [0.5,−0.2]. The evaluation
of the analytic probability distribution function is plotted on a two-dimensional grid using the
contour functions in python as follows shown in Figure 3:

2

−2 0 2
−3

−2

−1

0

1

2

3
N = 10

−2 0 2
−3

−2

−1

0

1

2

3
N = 200

−2 0 2
−3

−2

−1

0

1

2

3
N = 1000

Figure 2: Sampling in a two-dimensional mvn for different sizes

1 x, y = np.mgrid[-3:3:.01, -3:3:.01]

2 pos = np.dstack((x, y))

3 p = dist.pdf(pos)

4 fig, ax = plt.subplots(figsize=(3,3))

5 c = ax.contourf(x, y, p, cmap=’Blues’)

6 ax.set_xlabel(r’x_{1}’)

7 ax.set_ylabel(r’x_{2}’)

8 cax = ax.inset_axes([1.05, 0.05, 0.05, 0.9], transform=ax.transAxes)

9 fig.colorbar(c, cax=cax)

10 plt.show()

−2.5 0.0 2.5
x1

−2

0

2

x
2

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175

Figure 3: Probability density function of an mvn

3

