Lec 04

Wednesday, January 11, 2023 1:25 PM

Recap

Normal distribution \leftarrow central limit effect \Rightarrow single variable $\rightarrow \mu, \sigma$ \Rightarrow multi variable $\rightarrow \mu, \Sigma_{KXK}$ $\downarrow \downarrow \downarrow$ diagonal obtidiagonal \sim marginal \sim spread distr. over the space

)

variables:
$$C \rightarrow capacilg of the balkny
 $T \rightarrow lidetime of II$
 $P(C_{1}T) \sim N(M, \Sigma) \qquad \Sigma = \begin{bmatrix} \sigma_{c,c} & \sigma_{c,T} \\ \sigma_{1,c} & \sigma_{T,T} \end{bmatrix}$$$

C = 1007. 24 hrs

= 80% 12hrs

 $P(T|C=C_0) \leftarrow \text{ conditional distribution}$ P(C=1007., T=12hrs) > 0 = P(C) P(T|C=1007.) ? Bayels theorem = P(T) P(C|T=12hrs)]

$$= P(c) P(T)$$
T
T
Statistical independence.

$$\Rightarrow independently drawn identical data
(independently drawn identical data
(independently drawn identical data
(independently drawn identical data
(independently drawn identical data
 $P(c_{1}T) = erperiment$

$$\Rightarrow confounding in your data
 $P(c_{1}T) \sim N(M, \Sigma)$
($c_{1}, c_{2}, c_{3}, \dots, c_{n}$) $\sim N(M, \sigma)$
Litalihood of sampling from my dishibution
 $L(M, \sigma) = \prod_{i=1}^{m} P(C_{i})$
 $p(c_{1}, c_{2}, \dots, c_{n}) = P(c_{i}) P(c_{2}, \dots, c_{n}|c_{i}) = \prod_{i=1}^{n} P(C_{i})$
 $p(c_{1}, c_{2}, \dots, c_{n}) = P(c_{i}) P(c_{2}, \dots, c_{n}|c_{i}) = \prod_{i=1}^{n} P(C_{i})$
 $L(M, \sigma) = \prod_{i=1}^{m} N(M, \sigma)$
 $L(M, \sigma) = \prod_{i=1}^{m} N(M, \sigma)$
 $= \sigma^{-n}L(\pi)^{-n}L \exp\left(\frac{(c_{i}-\mu)^{n}}{2\sigma^{n}}\right)$
 $= \sigma^{-n}L(\pi)^{-n}L \exp\left(\frac{(c_{i}-\mu)^{n}}{2\sigma^{n}}\right)$
 $Values that maximits this expression
 A, σ
Maximum likelihood estimation ($\hat{\mu}, \hat{\sigma}$) \leftarrow maximizing
 $(MLE)$$$$$$